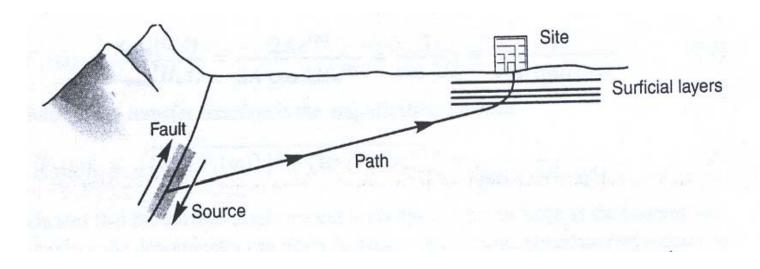
Micro Seismic Hazard Analysis

Mark van der Meijde

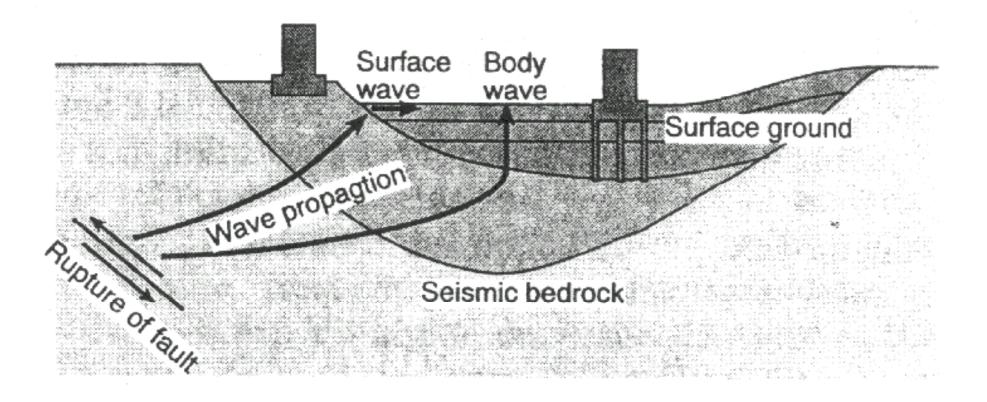
INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Overview

- Site effects
 - Soft ground effect
 - Topographic effect
- Liquefaction
- Methods for estimating site effects:
 - Soft ground effects:
 - Numerical methods: 1D response analysis (Shake)
 - Experimental/Emperical methods: HVSR method
 - Topographic effect:
 - Only qualititative methods
- Methods for estimating liquefaction:
 - Determine liquefaction potential
 - "Simplified procedure" by Seed and Idriss


Basic physical concepts and definitions

- What are site effects?
 - Effect of the local geology on the the characteristics of the seismic wave
- Local geology:
 - "Soft" sediments (overlying bedrock)
 - Surface topography
- The local geology can modify the characteristics of the incoming seismic wave, resulting in an <u>amplification</u> or <u>de-</u> <u>amplification</u>


Basic physical concepts and definitions (1)

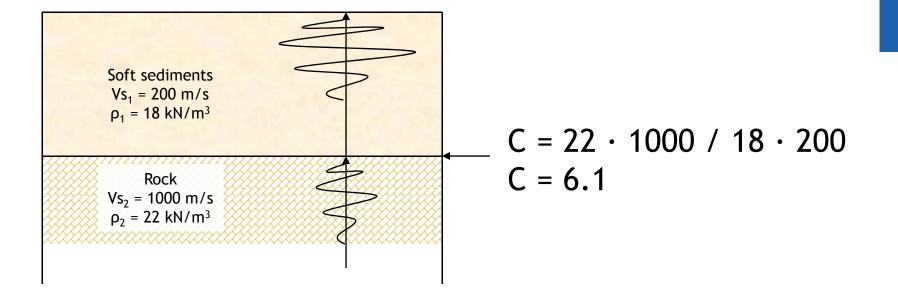
- Earthquake signal arriving at the site affected by:
 - Source activation (fault rupture)
 - Propagation path (attenuation of the signal)
 - Effect of local geology ((de-)amplification)

Basic physical concepts and definitions (2)

Site effects due to low stiffness surface soil layers - Soft ground effect (1)

- Influence of impedance and damping
 - Seismic impedance (resistance to motion): I= $\rho \cdot Vs \cdot \cos \theta$
 - ρ: density (kg/m³ or kN/m³)
 - Vs: (horizontal) shear wave velocity (m/s) measure of stiffness of the soil
 - Θ: angle of incidence of the seismic wave
 - Near the surface: $\theta \approx 0$: I = $\rho \cdot Vs$

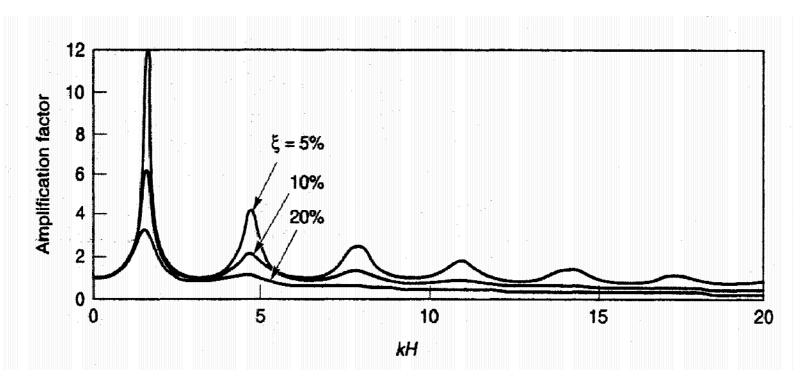
Site effects due to low stiffness surface soil layers - Soft ground effect (2)


- Differences in impedance are important:
- If impedance becomes smaller:
 - Resistance to motion decreases
 - Law of preservation of energy: Amplitude increases -> amplification
 - However, much of the increased energy is absorbed due to the damping of the soft soil

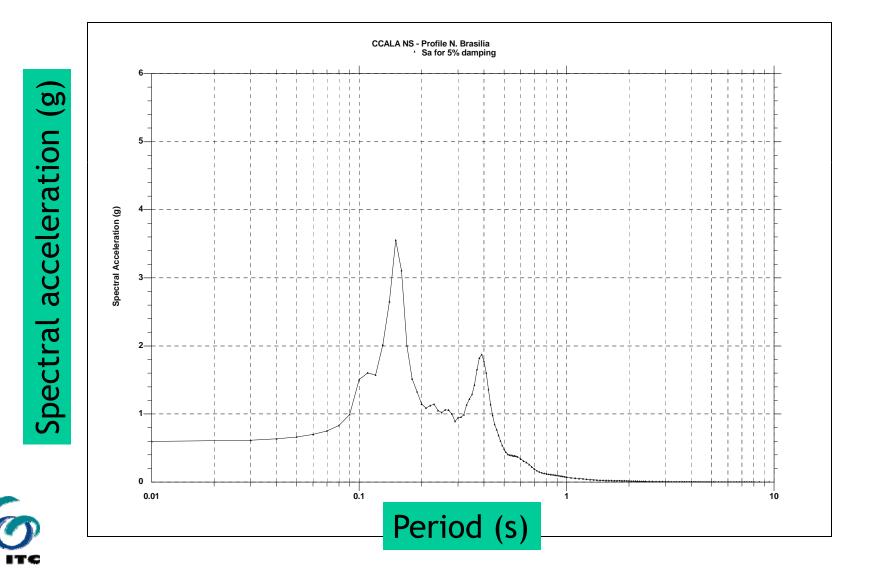
Site effects due to low stiffness surface soil layers - Soft ground effect (3)

Impedance contrast:

$$C = \rho_2 \cdot Vs_2 / \rho_1 \cdot Vs_1$$


Site effects due to low stiffness surface soil layers - Soft ground effect

- In the Earth, changes in impedance occur primarily in the vertical direction.
 - horizontal sedimentary strata near the surface
 - increase in pressure and temperature with depth
- Large impedance contrast between soft soil overlying bedrock cause also strong reflections:
 - Seismic waves become "trapped" within the soil layers overlying the bedrock
 - Trapped waves start interfering with each other, which may result in <u>resonance</u> (at the natural or fundamental frequency of the the soil)


Frequency and amplification of a single layer uniform <u>damped</u> soil

- Variation of amplification with frequency (for different levels of damping)
- Damping affects the response at high frequencies more than at low frequencies

Example of response spectrum

Fundamental frequency and characteristic site period

N-th natural frequency of the soil deposit:

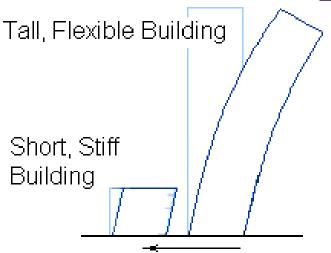
$$\omega_n \approx \frac{V_s}{H} \left(\frac{\pi}{2} + n\pi\right) \quad n = 0, 1, 2, \dots, \infty$$

The greatest amplification factor will occur at the lowest natural frequency: <u>fundamental frequency</u>

$$\omega_0 = \frac{\pi V_s}{2H}$$

Characteristic site period

 The period of vibration corresponding to the fundamental frequency is called the characteristic site period


$$T_{\rm S} = \frac{2\pi}{\omega_0} = \frac{4H}{V_{\rm S}}$$

 The characteristic site period, which only depends on the soil thickness and shear wave velocity of the soil, provides a very useful indication of the period of vibration at which the most significant amplification can be expected

Natural frequency of buildings

- Buildings tend to have lower natural frequencies when they are:
 - Either heavier (more mass)
 - Or more flexible (that is less stiff).
- One of the main things that Sh affect the stiffness of a building ^{Bu} is its height.
 - Taller buildings tend to be more flexible, so they tend to have lower natural frequencies compared to shorter buildings.

Examples of natural frequencies of buildings

Type of object or structure	Natural frequency (Hz)
One-story buildings	10
3-4 story buildings	2
Tall buildings	0.5 – 1.0
High-rise buildings	0.17

Rule-of-thumb: $F_n = 10/n$

F_n = Natural Frequency n = number of storeys

(Partial) Resonance

- Buildings have a high probability to achieve (partial) resonance, when:
 - The natural frequency of the ground motion coincides with the natural frequency of the structure
- Resonance will cause:
 - Increase in swing of the structure
 - Given sufficient duration, amplification of ground motion can result in damage or destruction

Vertical standing waves

- Vertical traveling waves will generate standing waves with discrete frequencies
 - If the depth range of interference is large, the frequency will be low.
 - If the depth range of interference is small the frequency will be higher.

Inelastic attenuation

- Earthquakes: seismic waves with broad range of frequencies
- Inelastic behaviour of rocks cause high frequencies to be damped out
- The farther a seismic wave travels, the less high frequencies it contains: anelastic attenuation

Summarising: building resonance and seismic hazard (1)

- Response of a building to shaking at its base:
 - Design and construction
 - Most important: <u>height</u> of the building

Building resonance and seismic hazard (2)

- Height determines resonance frequency:
 - Low buildings: high resonance frequencies (large wavelengths)
 - Tall buildings: low resonance frequencies (short wavelengths)
- In terms of seismic hazard:
 - Low-rise buildings are susceptible to damage from high-frequency seismic waves from relatively near earthquakes and/or shallow depth
 - High-rise buildings are at risk due to lowfrequency seismic waves, which may have originated at much greater distance and/or large depth

Soft ground effect - summary

- Soft soil overlying bedrock almost always <u>amplify</u> ground shaking
- Given specific ground conditions and sufficient duration of the quake, <u>resonance</u> can occur, resulting in even larger amplifications
- If a structure has a <u>natural frequency</u> similar to the <u>characteristic site period</u> of the soil, very large damage or total collapse may occur

Soft ground effect - example

- 19 Sept. 1985 Michoacan earthquake, Mexico City (M 8.0, MMI IX)
 - Epicenter far away from city (> 100 km)
 - PGA's at rock level 0.04 g but amplification due to soft ground: 5 x
 - Greatest damage in Lake Zone: 40-50 m of soft clay (lake deposits)
 - Characteristic site period (1.9-2.8 s) similar to natural period of vibration of 5-20 storey buildings
 - Most damaged buildings 8-18 storeys

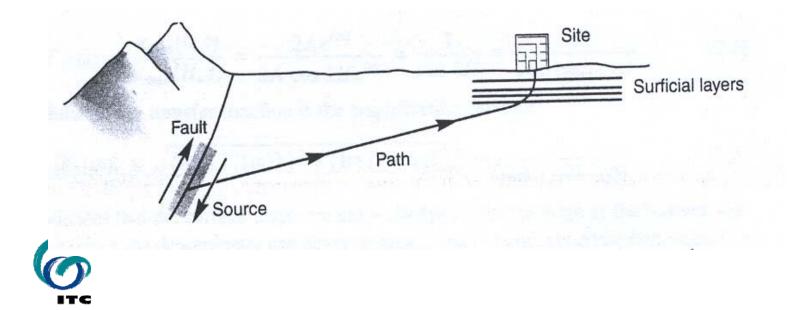
Michoacan earthquake

Collapsed 21-Story Office Building. Buildings such as the one standing in the background met building code requirements

The 44-floor Torre Latinoamericana office building in the background on the right, remained almost totally undamaged.

Methods to estimate (1D) soft ground effects

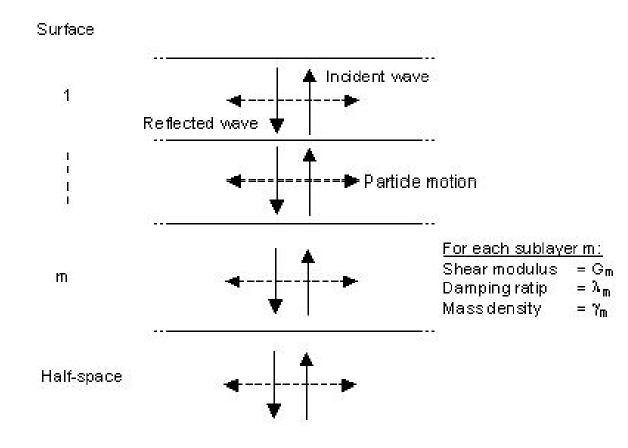
- Theoretical (numerical and analytical) methods
 - A-priori knowledge of:
 - Subsurface geometry and geotechnical characteristics
 - Expected earthquake signal: design earthquake
 - E.g.: Shake 1D numerical
- Experimental-Emperical
 - A-priori knowledge of geology not needed
 - E.g.: HVSR, SSR (comparison of spectral ratios of seismograms of large event or microtremors)


SHAKE

- The equivalent linear approach to 1D ground response analysis of layered sites has been coded into a widely used computer program SHAKE (1972)
- Other programs, based on same approach:
 - Shake91
 - ShakeEdit/Shake2000
 - ProShake/EduShake

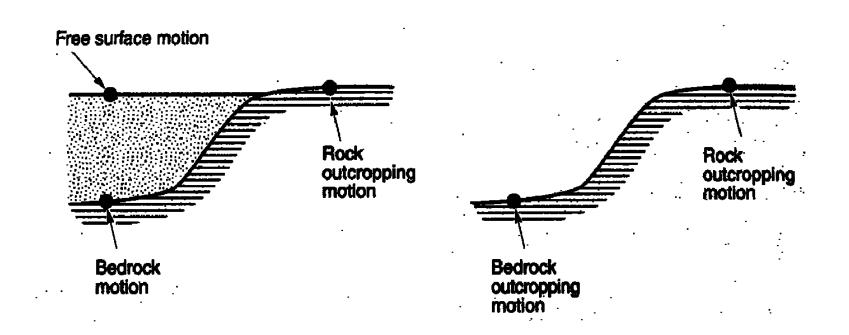
1D ground response analysis Assumptions (1)

 Inclined seismic rays are reflected to a nearvertical direction, because of decrease in velocities of surface deposits



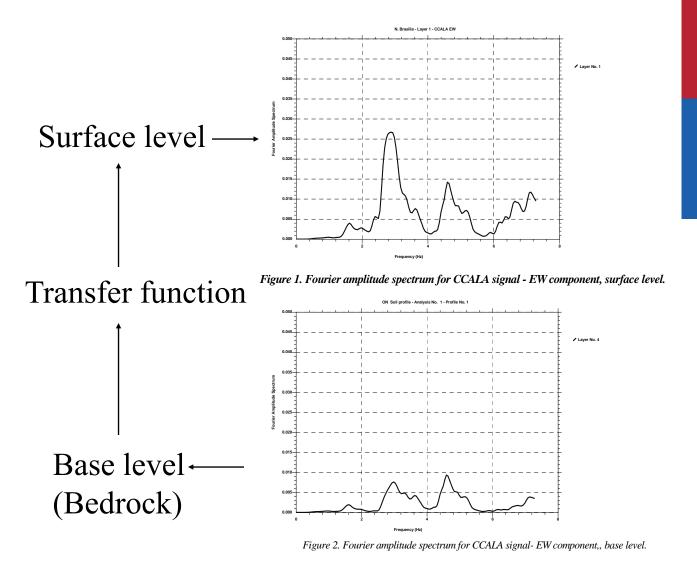
1D ground response analysis Assumptions (2)

- All boundaries are horizontal
- Response of the soil deposit is caused by shear waves propagating vertically from the underlying bedrock
- Soil and bedrock are assumed to extend infinitely in the horizontal direction (half-sphere)



General, simplified profile as assumed by the SHAKE program

Definitions used in the ground response model



Transfer Function as technique for 1D ground response analysis

- 1. Time history of bedrock (input) motion in the frequency domain represented as a Fourier Series using Fourier transform
- 2. Define the Transfer Function
- 3. Each term in the Fourier series is multiplied by the Transfer Function
- 4. The surface (output) motion is then expressed in the time domain using the inverse Fourier transform

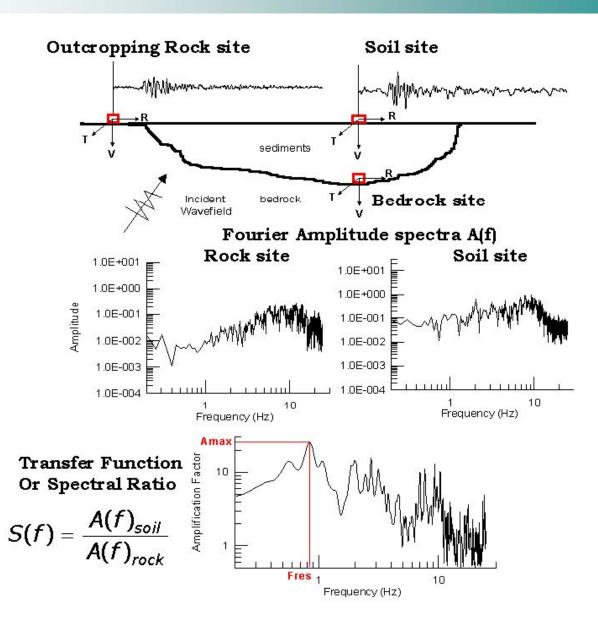
Effect of transfer function on Amplitude spectrum

Approach to simulate the non-linear behaviour of soils

- Complex transfer function only valid for linear behaviour of soils
- Linear approach must be modified to account for the non-linear behaviour of soils

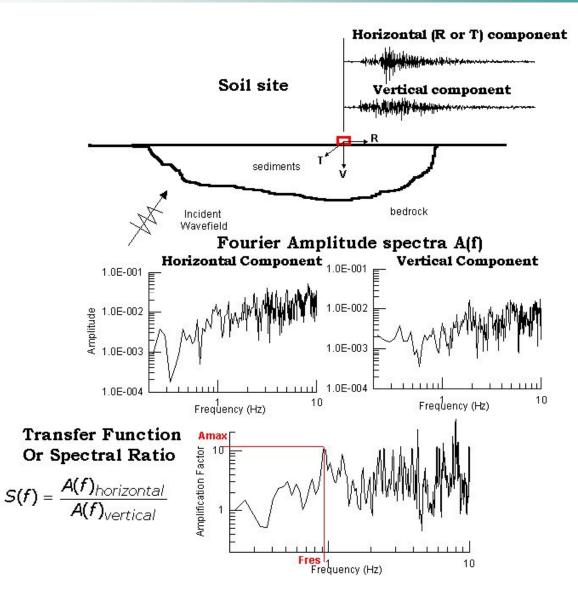
Procedure to account for nonlinearity

- Linear approach assumes constant:
 - Shear strength (G)
 - Damping (ξ)
- Non-linear behaviour of soils is well known
- The problem reduces to determining the equivalent values consistent with the level of strain induced in each layer
- This is achieved using an iterative procedure on the basis of reference (laboratory) test data
 - Modulus reduction curves
 - Damping curves



Experimental-Emperical

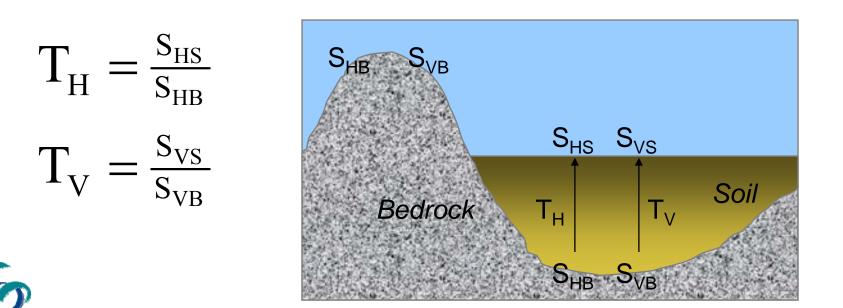
- Standard Spectral Ratio Technique (SSR)
 - Depend on reference site (in rock)
- Horizontal to Vertical Spectral Ratio Technique (HVSR)
 - No reference site needed
- Analysis of site effects using seismic records in the frequency domain



Standard Spectral Ratio Technique (SSR)

Horizontal to Vertical Spectral Ratio Technique (HVSR)

Nakamura's or H/V method (1)


Summary:

- Dividing the Horizontal Response spectrum (H) by the Vertical Response spectrum (V) yield a uniform curve in the frequency domain for different seismic events
- Assumption: since different seismic event yield the same H/V curve, it is possible to determine this using <u>microtremors</u>
- H/V curve show a peak in amplification at the fundamental frequency of the subsurface - that is when the resonance occurs
- By setting up a dense seismic network measuring those microtremors it is possible to carry out a microzonation without intensive borehole surveys

Nakumura's or H/V method (2)

 Establish empirical transfer functions T_H and T_V on the basis of the horizontal and vertical microtremor measurements on soil surface and at bedrock level:

Nakumura's or H/V method (3)

Modified site effect function:

$$T_{\text{Site}} = \frac{T_{\text{H}}}{T_{\text{V}}} = \frac{S_{\text{HS}} \cdot S_{\text{VB}}}{S_{\text{HB}} \cdot S_{\text{VS}}}$$

Many observations show that:

$$\frac{S_{VB}}{S_{HB}} = 1 \qquad \Longrightarrow T_{Site} = \frac{S_{HS}}{S_{VS}}$$

 T_{site} shows a peak in the amplification at the fundamental frequency of the site

Nakumura's or H/V method (4)

T_{site} or H/V curve shows the same peak <u>irrespective</u> of type of seismic event at F₀

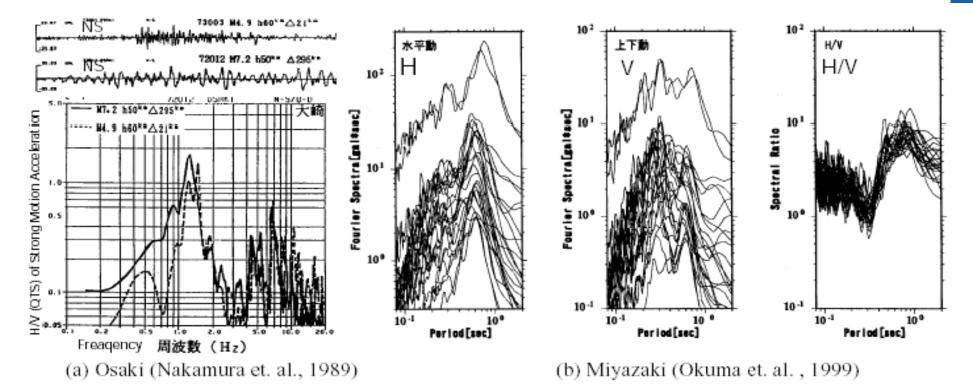
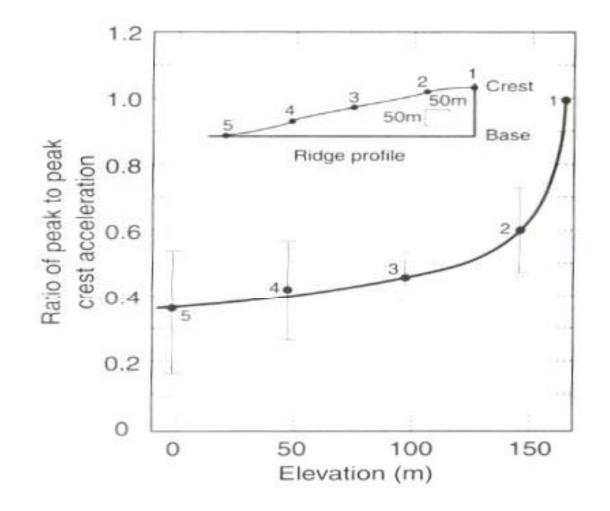


Figure 11. H/V of strong ground motion for different earthquakes recorded at the same station.

Nakumura's or H/V method (5)

 If F₀ and A₀ are known from the H/V curves and the seismic velocity of the bedrock (V_B) is also known, bedrock level or soil thickness (H) can be calculated:

$$F_{0} = \frac{V_{S}}{4 \cdot H}$$
$$A_{0} = \frac{V_{B}}{V_{S}}$$
$$\Rightarrow H = \frac{V_{B}}{4 \cdot A_{0} \cdot F_{0}}$$


Site effects due to surface topography

- General observation: buildings located on hill tops or close to steep slopes suffer more intensive damage than those located at the base
 - Amplification is larger for the horizontal than for the vertical
 - The steeper the slope, the higher the amplification
 - Maximum effect if the wavelengths are comparable to the horizontal dimension of the topographic feature
 - Absolute value of amplification ratio very difficult to quantify due to complex reflections within the geometry

Site effects due to surface topography

Recorded normalised peak accelerations

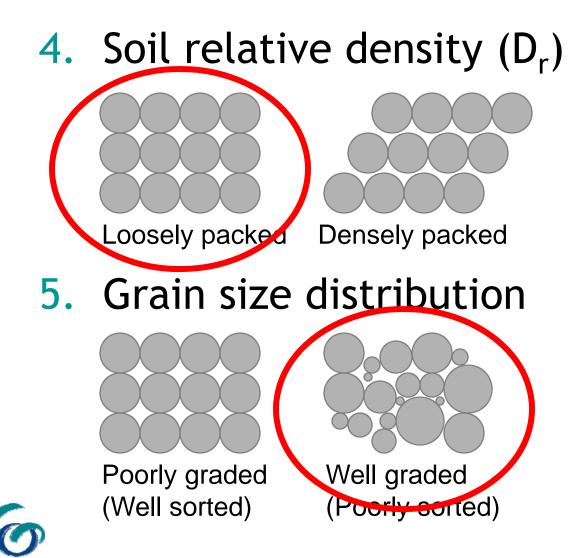
Liquefaction

Liquefaction - general (1)

- Typically occurs in saturated, loose sand with a high groundwater table
- During an earthquake, the shear waves in the loose sand causes it to compact, creating increased pore water pressure (undrained loading):
 - Upward flow of water: sand boils
 - Turns sand layer (temporarily) into a liquefied state - liquefaction

Liquefaction - general (2)

- Commonly observed in low-lying areas or adjacent to lakes, rivers, coastlines
- Effects:
 - Settlement
 - Bearing capacity failure of foundation
 - Lateral movements of slopes
- In practice:
 - Structures sink or fall over
 - Buried tanks may float to the surface



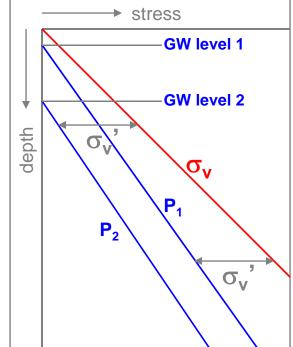
Liquefaction - governing factors (1)

- Earthquake intensity and duration (basically a high magnitude)
 - Threshold values: a_{max} > 0.10 g; M_L > 5
- 2. Groundwater table
 - Unsaturated soil <u>above</u> gw table will NOT liquefy
- 3. Soil type: non-plastic cohesionless soil
 - Fine-medium SAND, or
 - SAND containing low plasticity fines (SILT)

Liquefaction - governing factors (2)

Liquefaction - governing factors (3)

6. Placement conditions


- Hydrologic fills (placed under water)
- Natural soil deposits formed in
 - Lacustrine (Lake)
 - Alluvial (River)
 - Marine (Sea) environments
- 7. Drainage conditions
 - Example: if a gravel layers is on top of the liquefiable layer, the excess pore pressure can easily dissipate

Liquefaction - governing factors (4)

8. Effective stress conditions

- If the vertical effective stress (σ_v') becomes high, liquefaction potential becomes lower:
 - Low groundwater table
 - At larger depth (> 15 m.)

Liquefaction - governing factors (5)

- 9. Particle shape
 - Rounded particles tend to densify more easily than angular particles
- 10. Age, cementation
 - The longer a soil deposit is, the longer it has been able to undergo compaction and possibly cementation, decreasing liquefaction potential
- **11.** History
 - Soils already undergone liquefaction, will not easily liquefy again
 - Pre-loaded sediments (erosion, ice-sheet) will no easily liquefy

Liquefaction - governing factors summary

- Site conditions:
 - Site that is close to epicenter or location of fault rupture (macro hazard zone)
 - Soil that has a groundwater table close to the surface
- Soil type:
 - Loose SAND that is well-sorted and rounded, recently deposited without cementation and no prior loading or seismic shaking

Methods to estimate liquefaction potential

- Most commonly used liquefaction analysis:
 - "Simplified Procedure" by Seed & Idriss
 - Using SPT (Standard Penetration Test) data
- Procedure:
 - 1. Check appropriate soil type (see before)
 - 2. Check whether soil below groundwater table (from borehole)
 - 3. Determine Cyclic Stress Ratio (CSR):
 - 1. Effective stress in soil: thickness, unit weight, GW level
 - 2. Earthquake characteristics
 - 4. Determine Cyclic Resistance Ratio (CRR)
 - 1. Based on SPT data (N-value)
 - 5. Calculate Factor of Safety: FoS = CRR/CSR

